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Abstract

Natural language processing (NLP) systems have been developed to provide access to the tremendous body of data and knowledge

that is available in the biomedical domain in the form of natural language text. These NLP systems are valuable because they can

encode and amass the information in the text so that it can be used by other automated processes to improve patient care and our

understanding of disease processes and treatments. Zellig Harris proposed a theory of sublanguage that laid the foundation for

natural language processing in specialized domains. He hypothesized that the informational content and structure form a specialized

language that can be delineated in the form of a sublanguage grammar. The grammar can then be used by a language processor to

capture and encode the salient information and relations in text. In this paper, we briefly summarize his language and sublanguage

theories. In addition, we summarize our prior research, which is associated with the sublanguage grammars we developed for two

different biomedical domains. These grammars illustrate how Harris� theories provide a basis for the development of language
processing systems in the biomedical domain. The two domains and their associated sublanguages discussed are: the clinical domain,

where the text consists of patient reports, and the biomolecular domain, where the text consists of complete journal articles.

� 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

With the constantly increasing availability of online

textual information and computational power, we ex-

perience increased utilization of natural language pro-

cessing (NLP) techniques in the biomedical domain. In

the 2001 and 2002 AMIA Fall Symposiums there were

10 and 14 papers, respectively, on natural language

processing as compared to a handful of papers in ses-
sions before 1998. Similarly, the Pacific Symposium on

Biocomputing (PSB) has experienced an increased in-

terest in the use of NLP for mining the literature for

knowledge acquisition and improving retrieval of the

literature. The NLP sessions at the 2001, 2002, and 2003

PSB conferences attracted 10, 17, and 15 submissions,

respectively, from which 4, 6, and 5, respectively, were

accepted. In addition, in 2002 and 2003 the Association

of Computational Linguistics held the first two work-
shops on biomedical language processing.

NLP methodology has been used to obtain and

structure clinical and biomolecular information. Diverse

NLP clinical applications have been developed to be

used for decision support [1,2], encoding [3–6], data

mining and clinical research [7–9], order entry [10], in-

formation retrieval [11–13], and controlled vocabulary

[14]. A number of evaluations of these applications
demonstrated they were effective for realistic clinical

applications. Additionally, NLP has been used to im-

prove access to the biomedical literature. In the last few

years, a substantial effort has been associated with

identifying biomolecular substances. One type of system

primarily identifies gene or protein names in biological

texts, [15–18], and others extract relations between the

substances in order to automatically acquire knowledge
and to improve retrieval of information [19–26].

Zellig Harris proposed a theory of sublanguages

[27,28] that explains why it is possible to process lan-

guage in specialized textual domains, such as those
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found in genomics and medicine. According to Harris,
the languages of technical domains have a structure and

regularity, which can be observed by examining the

corpora of the domains, and which can be delineated so

that the structure can be specified in a form suitable for

computation. Whereas the general English grammar

theory primarily specifies well-formed syntactic struc-

tures only, Harris�s sublanguage grammar theory also
incorporates domain-specific semantic information and
relationships to delineate a language that is more in-

formative than English because it reflects the subject

matter and relations of a domain as well as the syntactic

structure.

The scientific grounding of Harris�s sublanguage
theory is well established and has been repeatedly veri-

fied by the vast amount of work that has been done in

this area. A set of papers on sublanguage processing and
research collected by Grishman and Kittridge [29] in-

cludes the domains of lipoprotein kinetics [29] clinical

patient reports [30], telegraphic navy messages [31,32],

and reporting of events in outer space [33]. Additional

work pertaining to the sublanguages of pharmacological

literature and lipid metabolism is described in Sager [34].

An earlier collection of papers on this subject was edited

by Kittredge and Lehrberger [35]. We find that Harris�s
principles are applicable to much of our work in bio-

medical language processing. In this paper we describe

properties of the languages of two specialized domains

in biomedicine, the clinical domain and the biomolecu-

lar domain, and show how Harris provides a linguistic

foundation for our work.

In the next section we provide background material

by summarizing important aspects of Harris�s principles
on language and sublanguage. We then present the first

major use of those principles, which resulted in the de-

velopment of a comprehensive sublanguage grammar

and medical language processing system by Sager [36]

who heads the Linguistic String Project. The subsequent

section analyzes features of the language of the clinical

domain, which is followed by a section on the language

of the biomolecular domain. Finally, we discuss differ-
ences and similarities of the two sublanguages, and

provide our conclusion.

2. Background

2.1. An overview of Harris’ theory on language and

sublanguage

Harris postulated that all occurrences of language are

word sequences satisfying certain constraints which ex-

press and transmit information. The constraints are:

dependency relations [28; 54–61], paraphrastic reduc-

tions [28; 79–96], and inequalities of likelihood [28; 61–

79]. Additionally, certain subsets of languages exist (i.e.,

sublanguages) within specialized domains that exhibit
specialized constraints due to limitations of the words

and relations of the subject matter [28; 272–318].

Dependency relations are concerned with syntactic

regularities, and are applicable to all general language as

well as to specialized languages. The crucial property is

the dependence of words in a sentence on other words,

and the categorization of words accordingly. Basically,

words that are nouns or concrete objects are considered
zero-level words (e.g., cats, fish) because they do not

depend on other words in the sentence. More specifi-

cally, zero-level words occur with other words that are

first or second level words. In contrast, words that are

verbs are either first-level or second-level words, which

are considered to be operators that are dependent on

their arguments. Sentences containing a first-level word

(i.e., eat as in cats eat fish) must contain zero-level words
that are arguments of the first-level words. Likewise

second-level words (e.g., knows) have at least one ar-

gument that is a first-level word. For example, in John

knows cats eat fish, the object argument of knows is a

sentence containing a first-level operator eats, which has

two zero-level arguments cats and fish. This language

component is concerned with classes of words but not

with individual words, and permits strange or unlikely
combinations, such as computers eat fish, as long as the

dependency constraints are met.

Inequalities of likelihood. The dependency relations

exhibit different likelihood constraints. For example,

certain arguments are more likely to occur with certain

operators than with others. Thus, cat is more likely to

occur as the first argument of eat than table or concept

is. The likelihoods of an operator in respect to particular
arguments are based on the frequency of operator-ar-

gument combinations; some combinations occur fre-

quently whereas others occur very rarely. In general

language, the likelihood constraints on operators and

their arguments are fuzzy, while in sublanguages the

constraints are generally sharper. In either case, com-

binations that have a very high likelihood create a low

information situation, in which case zeroing of highly
likely words may occur. For example, in general lan-

guage, the indefinite noun something is often zeroed, as

in I ate and I read, without loss of information. In the

clinical language there is no loss of information if the

noun patient and verb has is zeroed, as in fever.

Paraphrastic reductions involve transformations of the

sentences from a simple primitive form (which we typi-

cally do not observe in text) to a complex form that
consists of the actual sentences we see in textual docu-

ments (i.e., called the surface form). These reductions are

paraphrastic in that they are associated with operations

that change the structure of the sentence without

changing the informational content. These reductions

serve the purpose of eliminating information that is

highly likely to occur and that is redundant by shortening
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and combining the original sentences so that they rep-
resent a more efficient and compact form. For example,

the sentence John has a brown hat, is reduced from a

single sentence John has a hat; the hat is brown. When

looking at natural language text, we do not see the

original sentences because they generally have under-

gone numerous transformations to become the surface

forms that constitute the sentences we do see in text.

Sublanguage grammar. When we look at sentences
within a specialized domain, it is possible to observe

particular word classes and particular statement types

where the statement types generally contain operators

that are much more restrictive than the dependency re-

lations permitted in the general language and the like-

lihood constraints are much more definitive. For

example, in a general language it is permissible, al-

though not sensible, to say John activated protein A,
because the syntactic combination of word classes is

well-formed. However, in the biomolecular language

domain, this sentence is not legitimate because the op-

erator activate permits only certain combinations of the

word classes (i.e., substance activate substance, process

activate substance are allowed but person activate sub-

stance is not), and the sublanguage operators reflect the

salient relations and arguments that are meaningful in
the specialized domain.

Specialized sublanguages deal with specific subject

matter (i.e., textual radiological reports, discharge sum-

maries or other patient documents, biomolecular litera-

ture, medical literature, etc.). In this paper, we focus on

two sublanguages within the biomedical domain: clinical

reports and biomolecular relations found in the literature.

The specifications of these sublanguages resulted in the
implementation of two sublanguage grammars, which

were used to process text and to extract and structure

relevant information. It was possible to create these

grammars because of the regularities and co-occurrence

relations within each of the specialized sublanguages.

Immunology literature is also in the biomedical domain,

and Harris discussed the immunology sublanguage as

presented in a companion article in the same issue of this
journal. A more extensive analysis of the immunology

sublanguage is discussed by Harris et al. [37].

In the grammar of a specialized sublanguage, oper-

ators and arguments still satisfy the dependency rela-

tions of the whole language and paraphrastic reductions

still occur, but the vocabulary is limited, only restricted

combinations of words occur, and subclasses of words

combine in specified ways with other subclasses. In a
sublanguage, words form subsets from the larger word

classes of the overall language. In the biomolecular

domain, subsets of classes can be identified which cor-

respond to words denoting proteins, genes, cells, tissues,

and other biomolecular substances that constitute the

relevant objects corresponding to the subject matter of

the domain. Moreover, words that do not belong to

relevant word classes of the domain (e.g., pencil, desk)
are excluded from the sublanguage. We can also form

subsets from other classes, such as the verb class, that

depend on the subclasses of the arguments that co-occur

with the verbs. For example, the combination Fyn ac-

tivates Cbl is a well-formed pattern because the sequence

PROTEIN ACTIVATE PROTEINPROTEIN ACTIVATE PROTEIN occurs regularly, but the

combination liver cells bind to protein B (CELL ATTACHCELL ATTACH

PROTEINPROTEIN) is not allowed since that particular combi-
nation of word classes never occurs.

Thus, in order to create a sublanguage grammar, the

critical task is to discover the subclasses and important

relations. For each domain, clustering techniques [38]

help to discover a limited number of word classes and

sentence types for a large sample of a domain corpus.

However, the sentences are in surface forms, and

therefore, many reductions have occurred so that the
sentences are complex and not necessarily in forms close

to the underlying operator-argument forms, making the

discovery task more difficult.

There are several other elements of Harris�s theory
concerning sublanguages. A sublanguage may differ

from the whole language by omitting some grammatical

properties of the language or by allowing different re-

ductions. The domain-specific syntactic constraints and
reductions are not necessarily the same as those of

general English. We have observed this feature within

the clinical domain because many well-formed sentences

are telegraphic, in that they often are missing subjects

and verbs, because that information is implicit in the

context. For example, in a section of a report corre-

sponding to chief complaints, sentences may consist of

noun phrases only. In this context a noun phrase, such
as pain, has an operator, such as is associated with the

patient, which is expected in this context and therefore

can be omitted.

Another interesting observation is that sublanguages

may overlap because they are associated with some of

the same events or entities. For instance, the clinical and

biomolecular domains are concerned with tissues and

diseases, but the underlying relationships associated
with them differ substantially. That may imply that

similarities and differences in sublanguages or overlap-

ping scientific fields may be quantifiable by measuring

differences and similarities in words classes and their

membership in co-occurrence patterns.

3. Sublanguage features

In the following, we discuss features of languages in

specialized domains that have important implications

for the development of computerized natural language

processing systems:

• Semantic categorization of words. Relevant words can

be categorized into subclasses or types of information
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where the types form the underlying subject matter of
the domain. For example in the clinical domain there

are informational categories, such as: disease, proce-

dure, body location, and medication, whereas in the

biomolecular domain some relevant categories are:

gene, protein, amino acid, small molecules, and inter-

action.

• Co-occurrence patterns and constraints. Particular

subclasses of information combine in particular co-
occurrence patterns to form the meaningful relations

of the domain. In the clinical domain a relation such

as, PATIENT VERBPATIENT VERBhave SYMPTOM IN BODYLOCATIONSYMPTOM IN BODYLOCATION

(e.g., patient experienced pain in joints) specifies that a

patient is experiencing a symptom in a body location.

In the biomolecular domain, a relation, such as

protein1 VERBVERB interaction protein2 (e.g., Fyn activated

Cbl), would be appropriate, whereas the former pat-
tern most likely would not be. In addition, it is possi-

ble to refine a class, such as INTERACTIONINTERACTION, to further

constrain the arguments it combines with. For exam-

ple, if we create two subclasses of INTERACTIONINTERACTION,

called ACTIVATEACTIVATE and ATTACHATTACH, then we can refine

the well-formed patterns so that PROTEINPROTEIN

VERBVERBactivate PROCESSPROCESS (e.g., Akt activates apoptosis)

would be considered a valid pattern, whereas PRO-PRO-

TEIN VERBTEIN VERBattach PROCESSPROCESS (e.g., Cbl binds to apopto-

sis) would not be.

• Paraphrastic patterns. A set of patterns represent an

equivalence relation where the patterns are different

grammatically but represent the same underlying

operator-argument structure. Thus, in the clinical do-

main, the patterns BODYLOCATIONBODYLOCATION verbbe SYMPTOMSYMPTOM

(e.g., joints were painful), SYMPTOM IN BODYLOCA-SYMPTOM IN BODYLOCA-

TIONTION (e.g., pain in joints), SYMPTOM BODYLOCA-SYMPTOM BODYLOCA-

TIONTION (e.g., painful joints), and BODYLOCATIONBODYLOCATION

SYMPTOMSYMPTOM (e.g., joint pain) all are equivalent to PER-PER-

SON VERBSON VERBhave SYMPTOM IN BODYLOCATIONSYMPTOM IN BODYLOCATION. Simi-

larly, in the biomolecular domain, the patterns

protein2 verbbe verbinteraction BYBY protein1 (e.g., Cbl

was activated by Fyn), and protein2 nouninteraction OFOF

protein1 (e.g., Fyn activation of Cbl), are equivalent
to protein1 verbinteraction protein2 (e.g., Fyn activated

Cbl). It is therefore possible to choose one of the pat-

terns as representative of the type of informational

relationships conveyed by the set.

• Omission of information. In a specific domain, when the

context is known, additional contextual information is

often expected or understood. According toHarris, in-

formation that is expected is low in information con-
tent and can be omitted because it is recoverable

from the context. For example, in a radiological report

of the chest, infiltrate noted is interpreted to mean infil-

trate in lung was noted by radiologist. Omitted informa-

tion is troublesome for language processing because a

system must have additional knowledge in order to

recover all the implicit information.

• Intermingling of sublanguage patterns and general lan-

guage. When looking at text of a domain, the sublan-

guage patterns are often interspersed with general

language that is not in the sublanguage, making the

process of identifying sublanguage co-occurrence pat-

terns difficult. For example, in he complained of a se-

vere headache while working in the family store, and

then fainted, the expression while working in the family

store may be relevant to the patient�s condition but is
not in the clinical sublanguage because it does not

contain the sublanguage entities or relations while

the rest of the sentence does.

• Terminology. Within specialized domains, words of-

ten take on different meanings than in the general

world domain, and therefore specialized domain vo-

cabularies are needed to process domain text. For ex-

ample, in the clinical domain capsule may denote a
body location component, and in the biomolecular

domain, associates may denote an interaction sense

binds in addition to its general English sense. In mul-

ti-word terms the issue is more complex because a

term may have a meaning that is compositional and

therefore denotes the meaning of the components,

or that is non-compositional and denotes something

different than the combined meaning of the compo-
nents. For example, in radiological reports of the

chest, no active disease not only means that there is

no current disease activity but also denotes that there

are signs of a previous condition in the X-ray. Thus,

the phrase no active disease takes on a specialized

meaning in the domain as if it were a single word. Ev-

idence supporting this assumption is the frequent oc-

currence of the phrase in radiological reports and the
existence of a corresponding abbreviation NAD. The

issue concerning compositionality is not a trivial one,

and a number of articles have been published in the

medical domain that discuss compositionality [39–

41] and modification [42]. The main issue is whether

or not to treat certain multi-word terms, such as chest

pain and chronic cough, as single words, or as words

with modification. This issue is even more complex
in the biomolecular domain because (1) verbs play a

more significant role, (2) verbs frequently occur in

the nominal form (e.g., activation, activator), (3) ver-

bal relations are often nested, and (4) substances are

frequently given complex names that correspond to

the functions they perform. Thus, inhibitor of mitogen

activation may refer to the name of a particular entity

or to a type of entity (i.e., one that inhibits mitogen).
In the case of mitogen-activated protein kinase there is

evidence to support considering the phrase as a single

name: the phrase is frequently found in the literature,

and has a corresponding acronym, MAPK. We

believe that more research on this topic is needed.

The use of large domain corpora and statistical anal-

ysis of frequency distributions may provide us with
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objective criteria for determining whether or not a
term should be treated as a single unit (called a collo-

cation in the computational and statistical literature),

or a compositional phrase composed of separate ele-

ments. Manning and Sch€uutze [43] provide a discus-
sion about linguistic and statistical considerations

of collocations, which roughly are phrases that are

not straightforward compositions of the parts.

• Controlled vocabulary. Controlled vocabularies are
usually associated with domain-specific terminology,

well-defined concepts, and with a method for linking

the terms in the terminology to the concepts. These

vocabularies were generally defined based on expert

knowledge, and as such are not definable according

Harris because they were not established on distribu-

tional grounds. A controlled vocabulary is important

for computerized applications because it facilitates
sharing of information among different systems by

making it possible to map the multiple ways of ex-

pressing a concept to one well-defined concept in

the controlled vocabulary, thereby reducing the vari-

ety of expression after the mapping. However the

mapping between language and any controlled vo-

cabulary is somewhat arbitrary and difficult to justify

on objective grounds. In the clinical domain there are
several controlled vocabularies, such as the UMLS

[44], SNOMED [45], ICD-9 [46], and MESH [47],

which consist of well-defined or standard concepts

corresponding to words and phrases in the domain.

In the biomolecular domain there are a number of

systems that are associated with terminology and

controlled vocabularies, such as the Gene Ontology

[48], GenBank [49], SWISS-PROT [50], and Locu-
sLink [51].

• Ontology. If applications using a controlled vocabu-

lary require reasoning, a formal specification of the

entities and relations in the domain (i.e., an ontology)

is very useful. An ontology of a domain may overlap

with semantic classes associated with a domain sub-

language. For example, the clinical domain and bio-

molecular domain are likely to have classes
corresponding to body location, disease, and medica-

tion (classified as small molecules in the biomolecular

domain). However, in an ontology, the classes are

based on knowledge of the domain and are used to

facilitate reasoning. In a sublanguage, classes are

used to recognize, constrain, and interpret co-occur-

rence patterns. A big difference between the two is

that sublanguage patterns are obtained through ob-
jective analysis of data, while ontologies are not nec-

essarily constructed with direct empirical evidence.

An ontology may be useful for natural language pro-

cessing applications, but this is not necessarily true

because the granularity of the classes may differ.

For example, it is generally sufficient for a sublan-

guage to have one coarse class called DISEASEDISEASE (or

an even coarser class FINDINGFINDING) without having a
complex hierarchy of disease subclasses because all

the members of the class DISEASEDISEASE generally have

the same co-occurrence patterns. However, in an on-

tology, it would be preferable to partition the class

into subclasses since applications involving reasoning

would generally treat the subclasses DISEASEDISEASE, RESPI-RESPI-

RATORY DISEASERATORY DISEASE, PULMONARY DISEASEPULMONARY DISEASE, and

PNEUMONIAPNEUMONIA differently because they are associated
with different clinical properties.

4. The sublanguage of the clinical domain

4.1. Background

Harris provided a theoretical basis for sublanguage
processing and identified semantic categories and co-

occurrence patterns for several scientific languages. Two

large scale natural language processing systems, the

Linguistic String Project system [36] and the MedLEE

system [52], were both based on Harris�s theories and
were both applied to the clinical domain. However,

these systems differ from Harris because the grammars

they each use follow a constituent grammar formalism
and not an operator-argument formalism. Below we

present a brief overview of the sublanguage approaches

of the two systems.

The Linguistic String Project (LSP), headed by Sager

et al. [36], was a pioneering effort in language processing

in the general English domain and also in the clinical

domain. A detailed version of a computerized English

grammar and parsing system is described by Sager [53].
The LSP system was the first general comprehensive

NLP system in the medical domain that contained a

sublanguage grammar based on Harris�s sublanguage
theory. The LSP system inspired several other systems,

including the early version of PROTEUS [29], PUNDIT

[54], KERNEL [55], and MedLEE [52]. The LSP system

established 40 clinical subclasses that denoted the rele-

vant types of clinical information found in patient
documents (i.e., symptom, medication, body part), and

14 general English semantic subclasses associated with

verbs (e.g., have, be), temporal information (e.g., change,

increase), evidential information (e.g., no, present), and

connective operators (e.g., consistent with, and). In ad-

dition, six types of semantic relations were established

that corresponded to the representation of basic infor-

mational relations associated with patient management
(transferred to ICU), treatment excluding medication

(intubated), medication (penicillin qd), tests and results

(ppd positive), patient behavior (drinks excessively), and

patient state (pain in joints).

In the LSP system, each statement type could be

thought of as a frame or template representation that

denoted predetermined semantic relations among word
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classes. For example, a statement type corresponding
to patient state would be a template with slots for the

patient state, temporal information, body location,

severity, and evidence where the latter four types of

slots represent optional qualifiers of the patient state

(e.g., as in patient experienced severe pain in joints

yesterday). Similarly, a medication statement type

would have slots for medication, dose, frequency,

manner, etc. (e.g., on ampicillin 2mg qid po). Inter-
estingly, the six statement types accounted for the

majority of the relevant relations in the clinical do-

main.

MedLEE, which was developed by Friedman et al.

[52,56] is also a comprehensive language processing

system in the clinical domain that relies on a sublan-

guage grammar, which (i) specifies the subclasses in the

language, (ii) delineates the structure of the language
(i.e., well-formed sequences of subclasses), (iii) interprets

the relations among the elements of the structures, and

(iv) specifies a representational form for each structure,

which is consistent with a formal representational

schema for medical language [52]. The schema was de-

signed on the basis of experience with the LSP system

and a manual analysis of sample reports that were

randomly retrieved from the clinical repository of pa-
tient reports at Columbia-Presbyterian Medical Center

(CPMC).

MedLEE currently consists of 53 semantically rele-

vant classes, most of which are shown in Table 1, and

several syntactic classes that have semantic interpreta-

tions such as conjunction (e.g., and, or), preposition

(e.g., after, in), and certain types of verbs (e.g., involved,

demonstrated). The original schema was designed to
represent findings in radiological reports, and was ex-

pressed in the format of conceptual graphs, but was later

changed to a frame representation in the form of lists

because it was more convenient computationally. Ac-

cording to the MedLEE schema the main relations in a

radiology report consist of primary findings with op-

tional modifiers (e.g., moderate left posterior central

gyral hypodensity and connective relations between the
primary findings (e.g., CT scan revealed a hypodensity
consistent with an infarct). In the two examples the

primary information is underlined and the connective

relations are shown in bold. When expanded to broader

domains such as discharge summaries, additional basic

relations were added to represent new types of primary

clinical events, such as medication, laboratory tests,

demographic information, and behavior. Examples of
the primary types of information and target forms are

illustrated in Table 2.

4.2. Clinical sublanguage

Table 1 lists the semantic categories in the clinical do-

main alongwith examples. Someof the classes correspond

to primary types of information, such as BEHAVIORBEHAVIOR,

FINDINGFINDING, and MEDICATIONMEDICATION (e.g., drinks, pain, and as-

pirin). Additionally, some of the categories, such as

FINDINGFINDING, have been subdivided into subcategories

Table 1

Semantic categories and subcategories in the clinical domain and

examples

Primary

category

Subcategory Examples

ADT Admitted, transfer

Behavior User, drinks

Bodyfunc Breathing, movement

Bodymeas Pulse, weight

Device Catheter, atrial electronic

pacemaker

Finding

Cfinding Cardiomyopathy, diabetes

mellitus

Descriptor Patchy, egg shaped

Organism E. coli, Staphylococcus

Pfinding Enlarged, opacity

Labproc Liver function test, SMAC

Labtest Sodium, alkaline phosphatase

Med Aspirin, ace inhibitor

Proc Biopsy, collapse therapy

Examproc X-ray, spectral doppler

imaging

Substance Cigarettes, illegal substance

Technique Underpenetration, expired film

Modifier category

Bodyloc Heart, respiratory system

Certainty Possible, rule out

Change Increased, came down to

Degree Slight, extensive amount

Diagmaterial Barium, indium 131

Ethnic Dominican, Hispanic

Examphase Arterial phase, blood pool phase

Examtype Serial, digital subtraction

Family Mother, sister

Frequency Bid, times two

Locative Below

Manner Intravenous, continuous

infusion

Position Axial, medial lateral oblique

Ptactivity Awake, lying down

Ptdescr Twin, left handed

Quantity Multiple, one half

Race Caucausian, black

Reaction Respond, hypersensitive

Region Left, right, upper

Service Emergency room, ICU

Sex Female, male

Specialist Cardiologist, pathologist

Speciality Cardiology, pathology

Timeunit Day, morning

Unit mg, centimeters squared

Relational operator

Conjunction And, or, as well as, with

Connective Accompanying, including,

consistent with

Certainty verb

phrase

Appeared, cannot be excluded
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CFINDINGCFINDING (complete finding involving the overall pa-

tient (hypertension, diabetes) or a specific body location

(cardiomyopathy, enlarged heart), PFINDINGPFINDING (partial

finding, such as enlarged, tender) where a location has

not been specified, ORGANISMORGANISM (acinetobacter, clostrid-

ium difficile), and SYMPTOMSYMPTOM (chills, fever). The primary

categories represent the basic informational entities in

the sublanguage. Some are found to occur in sentences
by themselves without any verbs or other relational

operators. For example, in the chief complaint section of

a discharge summary, a sentence chills can be found,

whereas in the medications section a sentence aspirin can

be found. Even though these types of relations each only

consist of one word, and therefore do not explicitly

contain operators as described by Harris, they are still

consistent with Harris� theory. The reason that a sen-
tence chills is reasonable is that readers assume that the

operator is a verb, such as had, or was given, which was

omitted because it is expected. In addition, in each case,

it can also be assumed that an argument, patient, was

omitted.

Categories of information that are not considered

primary are modifier or secondary types of information.

These types do not occur by themselves because they
have meaning only when they modify other concepts or

relations. Modifiers may modify primary types or may

modify other modifiers. Examples of modifier classes are

also shown in Table 1. Some are related to temporal

information, such as onset (intermittent, sudden), evi-

dential information (rule out, no evidence, appears, has),

severity information (mild, extensive), body location

type of information (arm, left lower lobe), and descrip-
tive information (patchy, amorphous).

Table 2 shows some of the co-occurrence patterns for

the domain and specifies their target form. One infor-

mational relation in the language system may be asso-

ciated with multiple co-occurrence patterns, since there

are often many different ways to express the same in-

formation. For example, the patterns:

• BODYLOCATION VERBBODYLOCATION VERBbe SYMPTOMSYMPTOM (e.g., joints were

painful),

• SYMPTOM IN BODYLOCATIONSYMPTOM IN BODYLOCATION (e.g., pain in joints),

• SYMPTOM BODYLOCATIONSYMPTOM BODYLOCATION (e.g., painful joints), and

• BODYLOCATION SYMPTOMBODYLOCATION SYMPTOM (e.g., joint pain)

all have the same underlying structure as the pattern
PATIENT VERBPATIENT VERBhave SYMPTOM IN BODYLOCATIONSYMPTOM IN BODYLOCATION, are

all associated with the same interpretation, and there-

fore are also associated with the same target form. The

target forms are represented as frames in the form of

lists where the first element in the list denotes the pri-

mary type of information, the second denotes the value,

and the remaining elements are frames, which modify

the primary type of information. For example, the target
form for cigarette smoker is a frame denoting behavioral

type of information smokes. It has a substance modifier,

which has the value cigarettes.

Table 3 shows sample patterns for modifier categories

and their interpretation. For example, the pattern DE-DE-

GREE CHANGEGREE CHANGE is interpreted as a CHANGECHANGE type of

modifier where the DEGREEDEGREE type of information is op-

erating on the CHANGECHANGE information. Modifiers occur
frequently with primary categories and also with other

modifiers. For example, the CHANGECHANGE modifier can also

modify finding and procedure types of information, al-

though this is not shown in the simplified modifier

patterns shown in Table 3.

5. The sublanguage of the biomolecular domain

5.1. Background

A second comprehensive NLP system called GENIES

was developed by Friedman et al. [57] for the biomo-

Table 2

Simplified co-occurrence patterns illustrated with examples and target representational forms

Category Simplified patterns Examples Target form

Behavior Substance+behavior Cigarette smoker [behavior,smoke, [substance, cigarettes]]

Behavior+ substance Smokes cigarettes

Bodyfunc Bodyfunc+finding Walking with difficulty [problem,difficult, [bodyfunc,walk]]

Finding+bodyfunc Difficulty walking

Device Bodyloc+device Left ventricular assist device [device,assist device,

[bodyloc,ventricle, [region,left]]]

Finding Finding+ in+bodyloc Rash in arm [finding,rash, [bodyloc,arm]]]

Bodyloc+ vshow + finding Arm had a rash

Finding Change+Finding Increased pain [finding,pain, [change,increase]]

Finding+ vchange Pain increased

Finding+ vshow + change Pain did increase

Labtest Weight+of +measure Weight of 125 lbs [labtest,weight, [measure,[125,lb]]]

Labtest + vbe +measure Weight was 125 lbs

Proc Proc+of+bodyloc Biopsy of breast [proc,biopsy, [bodyloc,breast]]

Bodyloc+Proc Breast biopsy
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lecular domain, which was implemented by using the

MedLEE system with a different sublanguage grammar.

A sublanguage grammar specific to the biomolecular

domain was developed in order to extract and structure

biomolecular interactions from the literature that are
associated with signal transduction and biochemical

pathways within complex multicellular organisms as

well as yeast and bacteria. Domain expertise was used to

determine the important objects, entities, properties, and

events in the domain, and an ontology was established

by Rzhetsky et al. [58]. The ontology was based on ex-

pert knowledge and on manual analysis of the infor-
mation in 300 online journal articles in Science, Nature,

Cell, Proceedings of the National Academy of Sciences of

Table 3

Examples of modifier patterns for certain categories and the corresponding target forms

Category Modifier pattern Example Target form

Bodyloc Region+bodyloc Left arm [bodyloc,arm,[region,left]]

Bodyloc Bodyloc+bodyloc Facial hair [bodyloc,hair,[bodyloc,face]]

Certainty Negation+ certainty No evidence [certainty,no]

Certainty Degree+ certainty Slight possibility [certainty,possible,[degree,slight]]

Change Degree+ change Slight change [change,change,[degree,slight]]

Degree Degree+ degree Very severe [degree,severe,[degree,very]]

Time Quantity+Timeunit 2 weeks [timeunit,[2,week]]

Table 4

Semantic categories and subcategories in the biomolecular domain

Categories Subcategories Examples

Substance

Geneorprotein pip2, c-myc

Gene il-2, p53, Caveolin-1

Protein Cbl, Fyn, Let-23, Myc-p70s6kE389D3E

Aminoacid Tyrosine, threonine 229

Small molecule zDEVD, guanosine triphosphate, tetracycline

Domain Src homology 2

DNA DNA

RNA mRNA snRNA

DNA region Origin of replication, codon 249

Cell Jurkat cell, LBL-DR7 cells

Structure Polyvinylidene difluoride membrane

Tissue Adrenal glomerulosa, astrocytoma

Species Human, Epstein–Barr virus

Action

Activate Activate, induce, mediate, stimulate

Inactivate Inhibit, suppress, block, arrest

Attach Bind, join, immunoprecipitate

Actupon Affect

Breakbond Cleave, demethylate, proteolyze

Contain Contain, include

Cause Result in, lead to

Createbond Phosphorylate, polymerize

Express Express, overexpress

Generate Produce

Modify Mutate

Promote Catalyze, medate, enhance

React React, interact

Signal Up regulate, control, modulate

Substitute Replace, substitute

Transcribe Transcribe

Process

Process Apoptosis, survival, mitosis

Pathway Ras pathway

Disease FAD

State Mutant, active, anergy

Relation And, or, homology, orthology
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the USA, and Current Biology, which were associated
with the regulation of cell death in animals. The journal

articles contained a vast amount of different types of

information, but the domain expert determined which

was the most relevant for capturing pathway informa-

tion, and the sublanguage grammar was developed

based on that ontology. This method of formulating the

sublanguage classes and relations was a departure from

Harris because it was based on use of external expertise
rather than on distributional methods found in the text.

5.2. Biomolecular sublanguage

The sublanguage of molecular interactions is charac-

terized by sentences that have high informational and

structural complexity. The main type of information

currently being captured by GENIES involves interac-
tions, which are primarily expressed as verbal relation-

ships or their corresponding nominal form. Additionally,

the interactions are often highly inter-related because they

not only interact with substances but also interact with

other interactions, and therefore are nested. Because

verbs are central to this domain and different inflected

verb forms that correspond to actions (e.g., inhibit, inhi-

bition, inhibitor, inhibiting, inhibited) are associated with
different patterns, the sublanguage patterns include a

combination of semantic and syntactic categories that

also contain syntactic verbal subclasses. In particular, the

verb subclasses that are included in the sublanguage
patterns are: ACTIONACTIONvp (action verb, present tense—in-

hibit), ACTIONACTIONved (action verb, past tense—inhibited),

ACTIONACTIONven (action verb, past participle—inhibited), AC-AC-

TIONTIONving (action verb, progressive—inhibiting), ACTIONACTIONn

(nominal form of action verb—inhibition), and ACTIONACTIONvor
(agentive form of action verb—inhibitor).

Table 4 shows the sublanguage categories of the

biomolecular domain with examples. Notice there are
only five high level semantic categories specifically for

this domain: SUBSTANCESUBSTANCE, ACTIONACTION, PROCESSPROCESS, STATESTATE,

and RELATIONRELATION, but the categories have been subdivided

into finer subcategories. Thus there are 13 subcategories

for SUBSTANCESUBSTANCE, 16 for ACTION,ACTION, and 2 for PROCESSPROCESS.

The high level categories are convenient for imple-

menting the grammar patterns because it is simpler to

express the interaction patterns using the high level
categories (i.e., SUBSTANCE ACTIONSUBSTANCE ACTIONvp SUBSTANCESUBSTANCE

covers many of the interactions) and therefore less

grammar patterns are needed. However, these coarse

patterns are too permissive because they allow invalid

combinations. Therefore the subclasses, which are more

specific, are used to constrain the arguments of the ac-

tion verbs. Interestingly, these results are identical to the

results found by Harris et al. [37] in the work on
the immunology sublanguage. In order to illustrate

this phenomenon, we note that the pattern CELL ACTI-CELL ACTI-

VATEVATEvp GENEGENE is not valid while the pattern CELLCELL

Table 5

Co-occurrence patterns in the biomolecular sublanguage illustrated with example and target output forms

Category Basic patterns Examples Target form

Action Substance+ actionvpjved + substance Fyn activates Cbl [action,activate,[protein,Fyn],

[protein,Cbl]]

Substance+be+ actionven +by+ substance Cbl was activated by Fyn

Substance+ actionn + of + substance Fyn activation of Cbl

Actionn + of+ substance+by+ substance Activation of Cbl by Fyn

Substance+ actionved +by+ substance Cbl activated by Fyn

Substance+ actionvor + substance Cbl activator Fyn

Substance+ actionvor + of+ substance Fyn activator of Cbl

Actionn + of+ substance+ and+ substance The association of Cbl and Fyn [action,attach,[protein,Cbl],

[protein,Fyn]]

Substance+ actionn +with+ substance Fyn association with Cbl

Substance+dash+ substance+ actionn Fyn–Cbl association

Actionn + of+ substance Transcription of Il-2 gene [action,transcribe,[gene,il-2]]

Substance+ actionn Il-2 gene transcription

Substance Substance Bcl-2 [protein,Bcl-2]

State + substance Active Bcl-2 [protein,Bcl-2,[state,active]]

Substance+which/that + actionvvpjved +

substance/process

Bcl-2 that promotes cell death [protein,Bcl-2,[action,

promote,[protein,Bcl-2],

[process,apoptosis]]]

Process Process Mitosis [process,mitosis]

Substance+pathway Ras pathway [pathway,Ras]

Relation Substance+ conj+ substance Bcl-2 and Bad [relation,and,[protein,Bcl-2],

[protein,BAD]]
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EXPRESSEXPRESSvp GENEGENE is. Thus, in our work, we have found
that a fine-grained subclassification of the action verbs,

biomolecular substances and entities is consistent with

the ontology specified by Rzhetsky et al. [58] and is

useful to eliminate invalid patterns.

Table 5 shows some simplified patterns for the do-

main. Notice that there are many different ways of ex-

pressing the same information. In Table 5, there is a set

of seven different action patterns that have the same
target form (e.g., Fyn activates Cbl, Cbl was activated by

Fyn, Fyn activation of Cbl, Activation of Cbl by Fyn, Cbl

activated by Fyn, Cbl activator Fyn, Fyn activator of

Cbl), which consists of an interaction activate which has

two arguments: an agent Fyn and a target Cbl. The

representation for the information is the following:

½action; activate; ½protein;Fyn�; ½protein;Cbl��
The target form is similar to that associated with the

clinical domain. Table 6 provides examples of target

forms for seven sentences taken from the literature,
which are typical in that they are complex and nested.

The target form is similar to that of MedLEE because it

is also represented in the form of frame-based lists,

where the first element of the list represents the type of

information (e.g., action) and the second denotes the

value (e.g., activate). However, the interpretation of the

remaining elements is dependent on the frame being

represented. In action and relation frames, the next two
elements are generally ordered arguments of the action

or relation, although some actions, such as transcribe

have only one argument. In the above example, the first

frame, [protein, Fyn], is the agent of the action whereas

the second frame, [protein, Cbl], is the target. In that

example there are no modifiers of the action, but if there

were they would follow the arguments. For example, in
the last sentence in Table 6, the action phosphorylate has

two arguments followed by a negation modifier repre-

senting negation in the sentence Inactive akt failed to

phosphorylate BAD. Similarly, in the third sentence,

transcribe has only one argument, which is followed by

an action promote which modifies the transcription ac-

tion.

In frames associated with entities or states, the ele-
ments that follow the value element represent modifi-

ers. For example, in Table 5, the target form for

active BCL-2 represents an entity and therefore is [pro-

tein,BCL,[state,active]] because the entity is a protein,

which is BCL-2, and is modified by the state active. A

more complex modifier of a substance can be a relative

clause that is an action (e.g., Phosphorylated Cbl co-

precipitated with CrkL, which was constitutively associ-

ated with the GNRF C3G). The second sentence in Table

6 shows the target form for a sentence containing a

relative clause. It is quite complex, but not atypical,

because it also contains a conjunction as well as nested

interactions.

In Table 5, the patterns incorporate both semantic

and syntactic constraints. For example, the first pattern

requires an action verb that is a present tense verb,
whereas the third pattern requires an action verb in the

nominal form. More complex patterns that occur in the

sublanguage are obtained by replacing SUBSTANCESUBSTANCE

in many of the patterns with a nominalized action pat-

tern, thereby providing for nesting of interactions. For

example, the complex nested relation (SUBSTANCE AC-SUBSTANCE AC-

TIONTIONn OF SUBSTANCEOF SUBSTANCE) ACTIONACTIONvp (ACTIONACTIONn OF SUB-OF SUB-

STANCE TO SUBSTANCESTANCE TO SUBSTANCE) is formed by substituting both
the subject and object of the main action verb, as in Akt

Table 6

Examples of sentences with nested interactions and corresponding output representational forms

Interleukin-3-induced phosphorylation of BAD through the protein kinase akt

[action,activate,[protein,interleukin-3],[action,phosphorylate,[protein, kinase akt],[protein,bad]]

The adapter protein crkl was associated with both phosphorylated cbl and the guanidine nucleotide-releasing factor c3g, which catalyzes guanosine

triphosphate (gtp) exchange on rap1

[action,attach,[protein,crkl],[relation,and,[protein,cbl, [state,phosphorylated]],[protein,guanidine nucleotide-releasing factor c3g,[action,

activate,[protein,guanidine nucleotide-releasing factor c3g],[smallmolecule,guanosine triphosphate]]]]

Activated rap1 functions as a negative regulator of tcr and cd28-mediated il-2 transcription

[action,inactivate,[protein,rap1,[state,active]],[action,transcribe, [gene,gene encoding interleukin-2],[action,promote,[relation,and,[complex,tcr],

[protein,cd28]],[action,transcribe,[gene encoding interleukin-2]]]]]

Inhibition of 4 e-bp1 phosphorylation enhanced 4 e-bp1 binding to eif-4e

[action,promote,[action,inactivate,x,[action, phosphorylate,x,[protein,4 e-bp1]]],[action,attach,[protein,4 e-bp1],[protein,eif-4e]]]

Phosphorylation of catenin by glycogen-synthase kinase-3 induces the degradation of catenin by the ubiquitin-proteasome pathway

[action,activate,[action,phosphorylate,[protein,glycogen-synthase kinase-3],[protein,catenin]],[action,degrade,[pathway,

ubiquitin-proteasome],[protein,catenin]]]

BAD phosphorylation induced by Akt was not inhibited by wortmannin

[action,inactivate,[protein,wortamannin],[action,activate,[protein,akt], [action,phosphorylate,x,[protein,bad]]],[certainty,no]]

Inactive akt failed to phosphorylate bad

[action,phosphorylate,[protein,akt,[state,inactive]],[protein,bad],[certainty,no]]
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phosphorylation of BAD precludes the binding of BAD to

Bcl-xL. In this case the arguments of the verb precludes

are also interactions. Further examples of nested inter-

actions are shown in Table 6, where almost all the target

forms demonstrate nesting.

6. Comparison of biomedical and biomolecular sublan-

guages

Since the sublanguage of a particular science reflects

the underlying information of the science, it is not sur-

prising that the clinical and biomolecular sublanguages

are substantially different but also have a number of

interesting similarities. While this paper focuses only on

comparison between these particular two sublanguages,

a more thorough analysis of sublanguage differences and
commonalities was performed by Harris [28], who pro-

vides a theoretical basis for comparison through the

notion of ‘‘prior science.’’ In addition, Sager et al. [34]

compares the patient care and pharmacology sublan-

guages, and also discusses common characteristics of the

various science subfields.

The clinical sublanguage primarily expresses de-

scriptions of entities and events associated with the pa-
tient state, whereas the biomolecular sublanguage

expresses descriptions of events associated with biomo-

lecular substances and their interactions. Some of the

entities and modifiers in both domains overlap. Both

domains have modifiers relating to evidential, change,

quantitative, degree, and body location (referred to as

tissue in the biomolecular domain) types of information.

For example, in the clinical domain, sentences, such as,
pneumonia not ruled out and slight improvement in

pneumonia contain evidential (e.g., not ruled out) and

change information (e.g., improvement in) that modify

pneumonia, and degree information (e.g., slight) that

modifies the rate of change (e.g., improvement). In the

biomolecular domain, we also find evidential modifiers,

such as these results strongly suggest as in these results

strongly suggest that constitutive activation of the PI3K/

AKT pathway plays an essential role in v-Crk-induced

transformation of CEF, and change and degree modifi-

ers, such as significant increase in the sentence active Akt

induced a significant increase in BAD phosphorylation.

Additionally, there is overlap in the subject matter be-

cause both languages are concerned with tissues, dis-

eases, cells, and molecular components, such as genes

and other types of disease markers, and therefore the
grammars of the two sublanguages share these infor-

mational categories. For example, disease events and

biomolecular interactions occur in both. However, dis-

ease events occur more frequently in the clinical domain

whereas interactions occur more frequently in the bio-

molecular domain, reflecting the primary concerns of

the respective domains. Disease events occur in the

biomolecular domain in association with biomolecular
interactions but there is little emphasis on their de-

scription. Biomolecular events occur in the clinical do-

main because they are related to testing for the presence

of biological markers.

Typically, in clinical reports, the descriptions of dis-

eases, symptoms, diagnostic procedures, and treatments

are quite detailed, and often have many different types

of modifiers associated with time, change, severity, body
location, descriptive, and certainty types of information

because accurate descriptions of these events are critical.

Additionally, modifiers, which are secondary informa-

tion, are themselves modified less frequently. When

biomolecular substances and interactions occur in clin-

ical reports, they primarily occur in pathology reports

and denote findings (i.e., expression levels) of tests as-

sociated with biomolecular markers. Interactions, such
as neoplastic B cells do not express CD11C, are found in

text of both sublanguages. However, in pathology re-

ports, the interaction typically is a measurement de-

noting the level of expression, and the types of

interaction modifiers are limited as they mainly refer to

negation and degree types of information. In the bio-

molecular domain, the situation is the opposite. Bio-

molecular interactions and relations are quite complex
and highly nested but disease information is straight-

forward and occurs with few modifiers.

In both domains, the semantic relationships associ-

ated with the overlapping semantic categories are also

quite different, reflecting the different types of relation-

ships. For example, in the clinical domain, diseases are

primarily associated with procedures (V-Q scan positive

for pulmonary embolism), treatments (on Bactrim for

urinary tract infection), and patient information occurs

with temporal, severity, and body location types of

modifiers (chronic pulmonary embolism diagnosed in

1994). In the biomolecular domain, diseases are associ-

ated with genomic variations (alterations of the

PPP2R1B gene were found in human lung and colon

cancer), and molecular functional information, which

sometimes refers to a particular type of tissue/body lo-
cation (e.g., we evaluated CAR expression in prostate

carcinoma, RSG16 is abundantly expressed in the retina).

In this domain, biomolecular substances and interac-

tions frequently have modifiers, but tissues and diseases

generally do not.

A major difference between the two domains is the

complexity of the entities and relations. In the medical

domain, the information primarily is descriptive of the
patient�s condition. Thus, the primary concepts (i.e.,
disease, procedure, medication, vital sign, symptom, and

body location) are mostly nouns, and, excluding quan-

titative information, the modifiers are also generally

adjectives or nouns. The relations among the classes can

be divided into two types: simple and complex. A simple

relation consists of a single finding and associated
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modifiers. In simple relations, verbs are frequently
omitted (as well as the subject nouns) because they

are expected and therefore have low information con-

tent (e.g., in fever and headache, the phrase patient had

was omitted because it is expected); if verbs exist,

they are used to connect findings to modifiers (e.g., heart

was enlarged, blood pressure was high, pulse measured

70 bpm). A complex relation connects several findings,

or connects findings to procedures and/or treatments
using connective operators that are usually conjunctions

(e.g., and, with), prepositions and verbs associated with

causality (due to, led to), modality (suggests, including),

and time (status post, after). In the biomolecular do-

main, the primary information concerns descriptions of

biomolecular pathways consisting of complex interac-

tions and other relations. The primary relations associ-

ated with the pathways are expressed using verbs
because they denote interactions between substances

(e.g., p53 binds to il2). Frequently the verbs are ex-

pressed in the corresponding nominal or noun form

(e.g., activation) to allow for nesting. Since a pathway

itself is complex and consists of sequences of interac-

tions, the language expresses the sequences using com-

plex and highly nested relations. Thus, an argument of

an interaction can be another interaction and so forth,
in which case the interaction that is an argument gen-

erally occurs in the sentence in the nominal form. For

example, the fourth sentence in Table 6 (Inhibition of 4 e-

bp1 phosphorylation enhanced 4 e-bp1 binding to eif-4e)

illustrates a sentence where both arguments of the main

verb enhanced are interactions. The subject of enhanced

is an interaction inhibition, which is in the nominal form.

It also has a nested interaction 4 e-bp1 phosphorylation,
which represents an additional level of nesting. Fre-

quently, an additional level of nesting is expressed as a

past participle modifying an interaction in the nominal

form. For example, in the third sentence in Table 6

(Activated rap1 functions as a negative regulator of tcr

and cd28-mediated il-2 transcription) tcr and cd28-medi-

ated modify transcription which is an argument of

functions as a negative regulator.

7. Conclusions

Following the sublanguage theory of Zellig Harris,

we have delineated two specialized sublanguages, which

are quite different from each other but have some

overlapping components. A general English grammar
would have restricted us to specifying only the syntactic

structure of English, but by using the sublanguage ap-

proach, we were able to delineate the grammatical

structure of each specialized language and intersperse

syntactic information with the informational structure

and content of the language. One sublanguage concerns

the clinical domain, which is expressed in patient re-

ports, which is descriptive in nature, and which is
dominated by nouns and adjectives because the main

subject matter consists of clinical findings, treatments,

and procedures, which are expressed primarily as nouns.

The second sublanguage is concerned with the biomo-

lecular literature, which contains complex relations be-

tween biological substances, and which is dominated by

relations based on verbs. Specification of the sublan-

guages was accomplished by establishing semantic cat-
egories for the entities and relations in the domain,

specifying semantic and syntactic co-occurrence pat-

terns, and specifying target forms for each of the pat-

terns. The two grammars were implemented and

incorporated into operational NLP systems, called

MedLEE and GENIES, which both share a common

processing engine. The common underlying theory of

sublanguage made it possible for the two systems to
share the same engine by changing only the sublanguage

grammars. However, establishment of a sublanguage

grammar is difficult and we accomplished it using

manual analysis of sample corpora of the two domains.

Future work will involve developing machine learning

techniques to help automate or semi-automate the pro-

cess of discovering new co-occurrence patterns.
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